The Hydropower Resource:
On Earth, water is constantly moved around in various states, a process known as the hydrologic cycle. Water evaporates from the oceans, forming into clouds, falling out as rain and snow, gathering into streams and rivers, and flowing back to the sea. All this movement provides an enormous opportunity to harness useful energy.
The United Nations estimates that the total "technically exploitable" potential for hydropower is 15,090 terawatt-hours per year, or 15 trillion kilowatt-hours, equal to half of projected global electricity use in 2030. Only about 15 percent has been developed so far. While much of the remaining potential may not be economically or environmentally suitable to develop, there are still significant opportunities for new development in regions like the former Soviet Union, South Asia, and South America.
Hydropower provides one-fifth of the world's electricity, second only to fossil fuels. Worldwide capacity is 776 gigawatts (GW), with 12 percent in the United States, nine percent in Canada, and eight percent in Brazil. When completed, China's Three Gorges Dam, poised to become the largest hydroelectric project in the world with 18.2 GW of capacity, will move China ahead of Brazil. Globally, hydroelectric capacity has more than doubled since 1970, and another 100 GW is currently under construction.
In the United States, hydropower has grown steadily, from 56 GW in 1970 to more than 95 GW today. As a percentage of the U.S. electricity supply mix, however, it has fallen to 10 percent, down from 14 percent 20 years ago, largely as a result of the rapid growth in natural gas power plants. In terms of electricity production, hydropower plants account for about seven percent of America's current power needs.
In some parts of the country, hydropower is even more important. For example, the Pacific Northwest generates more than two-thirds of its electricity from 55 hydroelectric dams. The Grand Coulee dam on the Columbia River is one of the largest dams in the world, with a capacity of nearly 6,500 megawatts (MW).
In addition to very large plants in the West, the United States has many smaller hydro plants. In 1940 there were 3,100 hydropower plants across the country, but by 1980 that number had fallen to 1,425. Since then, a number of these small plants have been restored; there are currently 2,378 hydro plants (not including pumped storage) in operation. These plants account for only a tiny fraction of the 80,000 dams that block and divert our rivers. As a result, there is a significant opportunity for growth according to the National Hydropower Association, which estimates that more than 4,300 MW of additional hydropower capacity can be brought online by upgrading existing facilities.
Worldwide there is a great deal of growth in small hydro projects. The World Energy Council estimates that under current policies, installed capacity of small hydro will increase from about 48 GW today to 55 GW by 2010, with the largest increase coming from China.More than half of the current global small hydropower installed capacity is in China, with plans to develop a further 10,000 MW in the next decade
Converting Moving Water to Electricity
In order to generate electricity from the kinetic energy in moving water, the water has to be moving with sufficient speed and volume to turn a generator. Roughly speaking, one gallon of water per second falling one hundred feet can generate one kilowatt of electrical power.
To increase the force of moving water, impoundments or dams are used to raise the water level, creating a "hydraulic head," or height differential. When water behind a dam is released, it runs through a pipe called a penstock, and is delivered to the turbine.
Hydroelectric generation can also work without dams, in a process known as diversion, or run-of-the-river. Portions of water from fast-flowing rivers, often at or near waterfalls, can be diverted through a penstock to a turbine set in the river or off to the side. The generating stations at Niagara Falls are an example of diversion hydropower. Another run-of-the-river design uses a traditional water wheel on a floating platform to capture the kinetic force of the moving river. While this approach is inexpensive and easy to implement, it doesn't produce much power. The entire Amazon River, if harnessed this way, would produce only 650 MW of power.
Another type of hydropower, though not a true energy source, is pumped storage. In a pumped storage plant, water is pumped from a lower reservoir to a higher reservoir during off-peak times, using electricity generated from other types of energy sources. When the power is needed, it is released back into the lower reservoir through turbines. Inevitably, some power is lost, but pumped storage systems can be up to 80 percent efficient. There is currently more than 90 GW of pumped storage capacity worldwide, with about one-quarter of that in the United States. Future increases in pumped storage capacity could result from the integration of hydropower and wind power technologies. Researchers believe that hydropower may be able to act as a battery for wind power by storing water during high wind periods.
There are a variety of turbines employed at hydropower facilities, and their use depends on the amount of hydraulic head at the plant. The most common are Kaplan, Francis, and Pelton wheel designs. Some of these designs, called reaction and impulse wheels, use not just the kinetic force of the moving water but also the water pressure.
The Kaplan turbine is similar to a boat propeller, with a runner (the turning part of a turbine) that has three to six blades, and can provide up to 400 MW of power. The Kaplan turbine is differentiated from other kinds of hydropower turbines because its performance can be improved by changing the pitch of the blades. The Francis turbine has a runner with nine or more fixed vanes. In this turbine design, which can be up to 800 MW in size, the runner blades direct the water so that it moves in an axial flow. The Pelton turbine consists of a set of specially shaped buckets that are mounted on the outside of a circular disc, making it look similar to a water wheel. Pelton turbines are typically used in high hydraulic head sites and can be as large as 200 MW.
The ability to meet power demand fluctuations is an advantage of hydro plants with reservoirs. Unlike run-of-the-river plants, which produce power around the clock, hydro plants with dams are typically used only when the power is most needed. Utilities save up the water, letting it loose only during peak times. Hydro plants, especially the large older plants built from the 1930s to the 1950s, are commonly the least-expensive source of electricity.
No comments:
Post a Comment